

Feature Aggregation in Zero-Shot Cross-Lingual Transfer Using Multilingual BERT

Beiduo Chen¹ Wu Guo¹ Quan Liu² Kun Tao²

¹NERC-SLIP, University of Science and Technology of China ²State Key Labo

²State Key Laboratory of Cognitive Intelligence, iFLYTEK Research

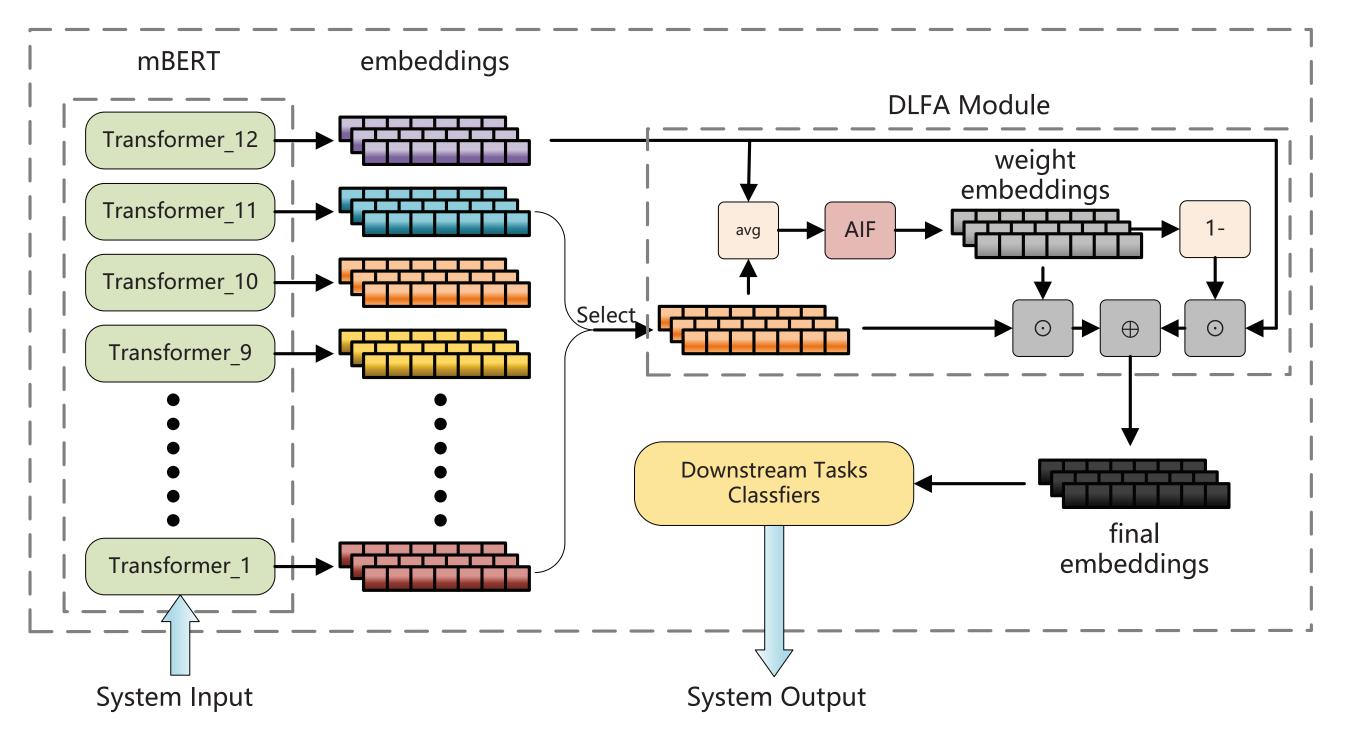
Introduction

- Task zero-shot cross-lingual transfer
- **Object** pre-trained multilingual BERT (mBERT)
- Issue the mainstream methods to solve the cross-lingual downstream tasks are always using the last transformer layer's output of mBERT as the representation of linguistic information

Contribution

We prove that the output of layers before the last layer can provide supplementary information to the last layer of mBERT for different zero-shot cross-lingual downstream tasks. The optimal dynamic equilibrium between cross-lingual capability and language-structured ability of mBERT is discussed.
We design a feature aggregation module based on an attention mechanism to fuse information from two transformer layers.
Experimental results on four cross-lingual downstream datasets show that our method improves the performance of mBERT on all tasks compared to the baseline and is generalized in various situations.

System Architecture



Attentional Information Fusion

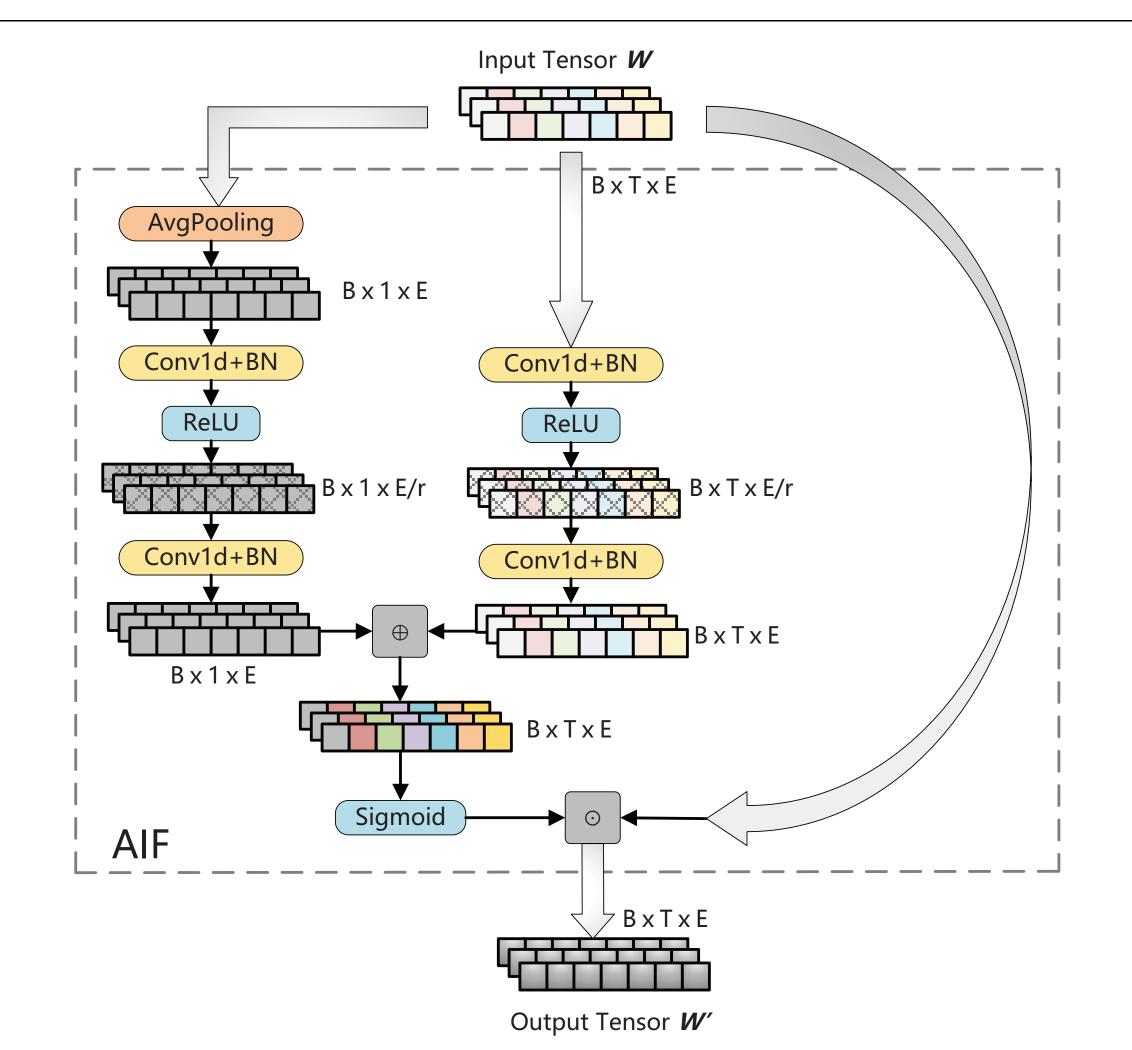


Figure 1. The overall structure of the proposed system.

Double Layers Feature Aggregation

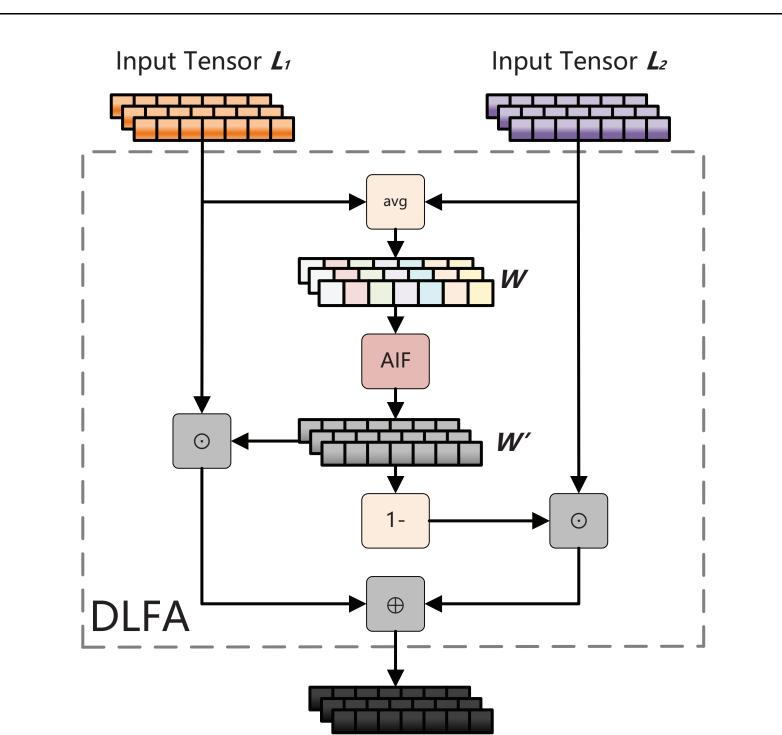


Figure 2. The architecture of the proposed attentional information fusion (AIF) module. The AIF extracts global and local information via two branches and element-wisely multiplies the result with the input tensor

Main Results on Xtreme Benchmark

Table 1. All results of zero-shot cross-lingual transfer trials for 4 tasks. "D_x" means the system with the DLFA module that fuses the last and the x^{th} transformer layers' output.

Task	XNLI	PAWS-X	NER	POS
Model\Metrics	Acc (%)	Acc (%)	F1 (%)	F1 (%)
baseline	65.40	81.94	62.17	70.28
D_11	66.91	83.04	62.27	71.53
D_10	66.55	84.33	62.76	71.81
D_9	66.57	84.24	62.43	71.58
D_8	66.90	82.91	63.34	71.36
D_7	66.20	83.48	62.63	71.52
D_6	66.75	84.37	61.84	71.29
D_5	65.42	82.44	61.66	71.08
D_4	66.14	82.75	62.28	71.26
D_3	66.00	83.81	61.88	71.21
D_2	66.15	83.04	61.34	71.38
D_1	65.85	82.50	61.73	71.18

Output Tensor *L*

Figure 3. The architecture of the proposed double layers feature aggregation (DLFA) module. The DLFA fuses the information from one selected lower transformer layer of mBERT and that from the last transformer layer.

$$W' = W \odot Sigmoid(W_{Global} \oplus W_{Local}) = AIF(W)$$
(1)

$$L = L_1 \odot AIF(\frac{L_1 \oplus L_2}{2}) + L_2 \odot (1 - AIF(\frac{L_1 \oplus L_2}{2}))$$
(2)

Analysis and Discussion

Table 2. Results of Classification tasks. The scores in the "avg_enf" column denote the average performance of the subset "enf" (involving "en, de"). The scores in the "avg_noenf" column denote the average performance of the subset "noenf".

XNLI			PAWS-X			
Model	avg_enf	avg_noenf	Model	avg_enf	avg_noenf	
baseline	75.40	63.86	baseline	89.85	78.80	
D_11	77.34	65.31	D_10	90.30	81.94	
D_8	77.11	65.34	D_6	90.00	82.12	

Table 3. Results of cosine similarity experiment on XNLI and PAWS-X.

Best performances on these four tasks are obtained with different fusion layers. Different tasks focus on different aspects of language structure learning ability, resulting in the fusion of different layers. Table 2,3,4 indicate that the information of language structure lies on the upper layers while the lower layers of mBERT are more flexible for cross-lingual transfer.

XNLI		PAWS-X		
Model	Avg C.S.	Model	Avg C.S.	
D_11	0.5689	D_10	0.8548	
D_8	0.6822	D_6	0.9461	

Table 4. Several languages' results on PAWS-X(Acc.)

Model\Lang	en	de	fr	es	ko	zh
mBERT	94.0	85.7	87.4	87.0	69.6	77.0
D_10	94.1	86.5	88.3	88.79	75.8	80.3
D_6	93.9	86.0	87.8	89.09	76.1	81.2

Mail to: beiduo@mail.ustc.edu.cn

The 26TH International Conference on Pattern Recognition

Paper Number: 403