

Multi-Level Contrastive Learning for Cross-Lingual Alignment

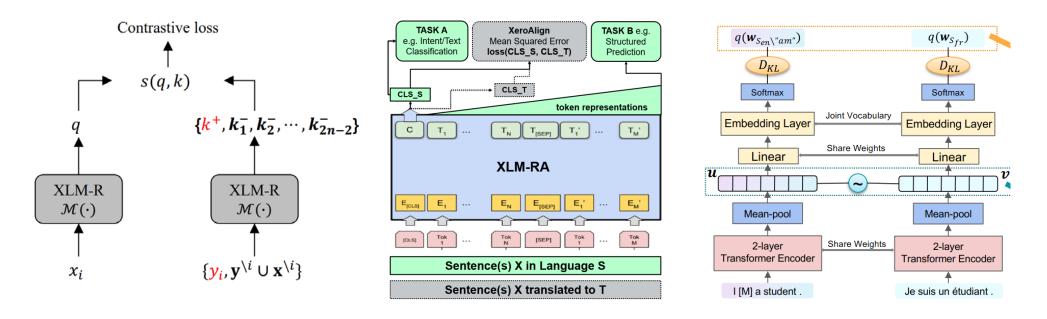
Beiduo Chen¹, Wu Guo¹, Bin Gu¹, Quan Liu², Yongchao Wang²

¹National Engineering Research Center for Speech and Language Information Processing, University of Science and Technology of China

²State Key Laboratory of Cognitive Intelligence, iFLYTEK Research

Introduction

- Multi-level contrastive learning (ML-CTL)
- Cross-zero noise contrastive estimation loss (CZ-NCE)
- Experiments and analyses
- Conclusion


Cross-lingual Language Model

- Transformer based: mBERT, XLM
- MLM: mask language modeling

Input	[CLS] my dog	is cute	[SEP] he	likes play	##ing [SEP]
Token Embeddings	E _[CLS] E _{my} E _{dog}	E _{is} E _{cute}	E _[SEP] E _{he}	E _{likes} E _{play}	E _{##ing} E _[SEP]
Segment Embeddings	$\begin{array}{c c} \bullet & \bullet & \bullet \\ \hline E_{A} & E_{A} & E_{A} \end{array}$	+ + E _A E _A	+ + E _A E _B	+ + E _B E _B	+ + Ε _B Ε _B
	+ + +	+ +	+ +	+ +	+ +
Position Embeddings	E_0 E_1 E_2	E ₃ E ₄	E ₅ E ₆	E ₇ E ₈	E ₉ E ₁₀

Contrastive Learning

- Issue: no explicit cross-lingual alignment
- Exist solution: contrastive learning (CTL)

Contrastive Learning

- Issue: no explicit cross-lingual alignment
- Exist solution: contrastive learning (CTL)
 - New issue: only sentence-level CTL

sentence-level \rightarrow sentence-level + word-level

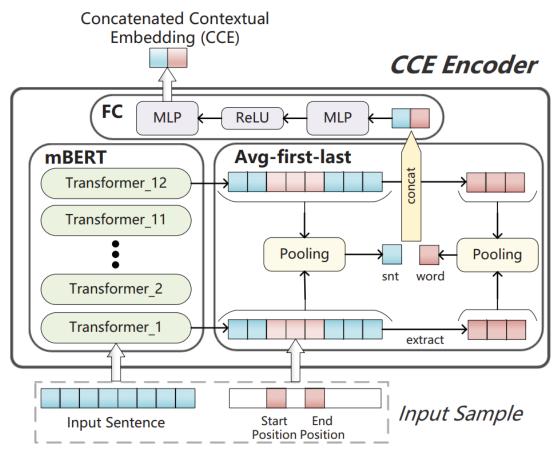
Multi-Level Contrastive Learning

Computational Resources

- Issue: high demand for computational resources
- InfoNCE:

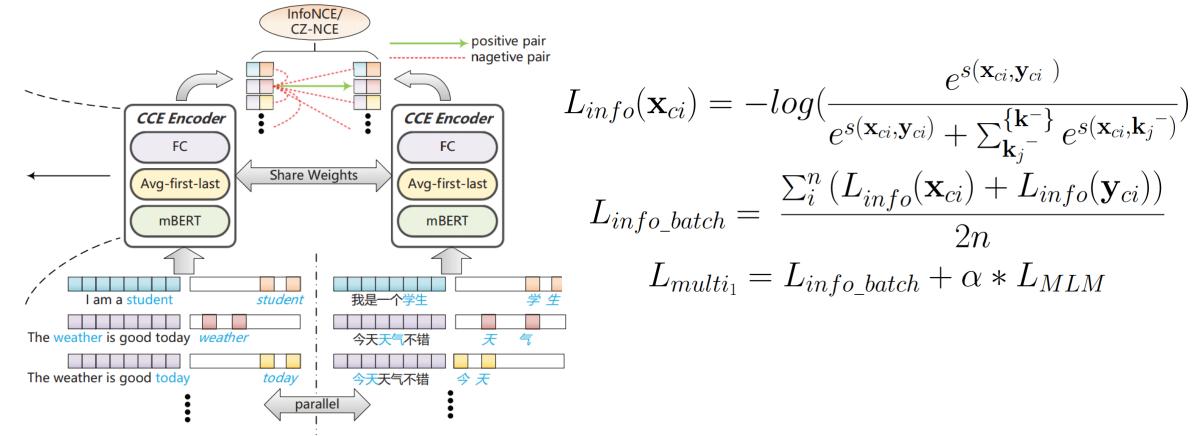
$$L_{infoNCE} = -log(\frac{e^{s^+}}{e^{s^+} + \sum e^{s_i^-}})$$

Especially serious in contrastive learning


→ Cross-zero NCE loss

- Introduction
- Multi-level contrastive learning (ML-CTL)
- Cross-zero noise contrastive estimation loss (CZ-NCE)
- Experiments and analyses
- Conclusion

ML-CTL


Ē

Concatenated Contextual Embedding Encoder

ML-CTL

• Multi-level contrastive learning framework

- Introduction
- Multi-level contrastive learning (ML-CTL)
- Cross-zero noise contrastive estimation loss (CZ-NCE)
- Experiments and analyses
- Conclusion

CZ-NCE

$$L_{infoNCE} = -log(\frac{e^{s^+}}{e^{s^+} + \sum e^{s_i^-}}) \Rightarrow L_{CZ-NCE} = -log(\frac{e^{s^+}}{\sum e^{s_i^-}})$$

CZ-NCE

• Demonstration


$$\begin{split} L_{CZ-NCE} &= -\log(\frac{e^{s^+}}{\sum e^{s_i^-}}) = \log(\sum e^{s_i^- - s^+}) = \log(\varphi) \\ \nabla_{\theta} L_{CZ-NCE} &= \nabla_{\theta} \log(\varphi) = \frac{\nabla_{\theta} \varphi}{\varphi} = \nabla_{\theta} (\frac{\varphi}{sg(\varphi)}) \\ L_{multi2} &= L_{CZ-NCE_batch} + \alpha * L_{MLM} \end{split}$$

- Introduction
- Multi-level contrastive learning (ML-CTL)
- Cross-zero noise contrastive estimation loss (CZ-NCE)
- Experiments and analyses
- Conclusion

Experiments and analyses

Task	XNLI	PAWS-X	POS	NER	BUCC	TATOEBA			
Model\Metric	Acc. (%)	Acc. (%)	F1 (%)	F1 (%)	F1 (%)	Acc. (%)			
Main results compared to strong baselines									
mBERT (base)	65.4	81.9	70.3	62.2	56.7	38.7			
XLM	69.1	80.9	70.1	61.2	56.8	32.6			
MMTE	67.4	81.3	72.3	58.3	59.8	37.9			
ML-CTL-CZ	67.8	85.3	72.3	62.9	78.4	43.4			
Results of ablation study									
mBERT (base)	65.4	81.9	70.3	62.2	56.7	38.7			
info-snt	66.255	84.092	71.544	62.157	76.426	41.148			
CZ-snt	66.862	84.485	71.733	62.337	77.403	41.751			
ML-CTL-CZ	67.750	85.321	72.289	62.865	78.440	43.389			

Ę

(a) mBERT

(b) info-snt

(d) ML-CTL-CZ

- Introduction
- Multi-level contrastive learning (ML-CTL)
- Cross-zero noise contrastive estimation loss (CZ-NCE)
- Experiments and analyses
- Conclusion

Conclusion

- ML-CTL is proposed to improve the cross-lingual alignment ability of pre-trained language models by applying contrastive learning on concatenated contextual embeddings which contain information of both sentences and words.
- CZ-NCE is proposed to alleviate the impact of the floatingpoint error with a small training batch size.