

# "Seeing the Big through the Small": Can LLMs Approximate Human Judgment Distributions on NLI from a Few Explanations?

Beiduo Chen, Xinpeng Wang, Siyao Peng, Robert Litschko, Anna Korhonen, Barbara Plank

MaiNLP, Center for Information and Language Processing, LMU Munich, Germany

Munich Center for Machine Learning (MCML), Munich, Germany

Language Technology Lab, University of Cambridge, United Kingdom







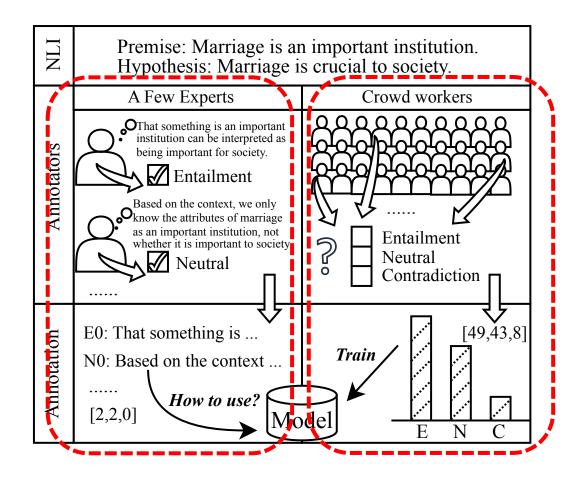




- **Introduction**
- > LLMs to Estimate Human Judgment Distributions
- Experimental Setup
- > Results & Discussion
- **>** Conclusion



#### MAXIMILIANS-UNIVERSITÄT Introduction


• **Human Label Variation** (HLV) is a valuable source of information that arises when multiple human annotators provide different labels for valid reasons.

In Natural Language Inference



LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

### Introduction





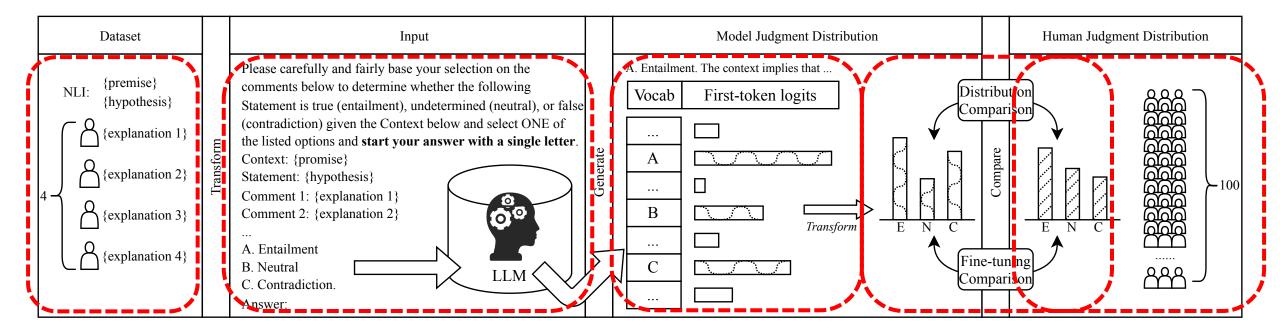
#### MAXIMILIANS-UNIVERSITÄT Introduction

- Human Label Variation (HLV) is a valuable source of information that arises when multiple human annotators provide different labels for valid reasons.
- In Natural Language Inference, approaches to capturing HLV involve either collecting annotations from many crowd workers to human judgment distribution (HJD) or use expert linguists to provide detailed explanations for their chosen labels.
- Large Language Models (LLMs) are increasingly used as evaluators ("LLM judges") but with mixed results, and few works aim to study HJDs.



#### MAXIMILIANS-UNIVERSITÄT LLMs to Estimate HJDs

- Research Question:
- 1. Can LLMs provided with a "small" number of detailed explanations better approximate the human judgment distributions collected by a "big" number of annotators?
- 2. Are the obtained model judgment distributions (MJDs) suitable as soft labels for fine-tuning smaller models to predict distributions?




- > Introduction
- > LLMs to Estimate Human Judgment Distributions
- Experimental Setup
- > Results & Discussion
- **>** Conclusion



LUDWIG-MÜNCHEN

### MAXIMILIANS-UNIVERSITÄT LLMs to Estimate HJDs





### LLMs to Estimate HJDs LLMs to Estimate HJDs

First-token Probability

$$p_{ ext{norm}}^O(j) = rac{s_j}{\sum_j^{|O|} s_j},$$

$$p_{ ext{sfmax}}^O(j) = rac{\exp(s_j/ au)}{\sum_j^{|O|} \exp(s_j/ au)},$$

- Bias Consideration
  - ABC orders; explanation orders
  - Serial / Parallel processing mode
- With/Without Explicit Label



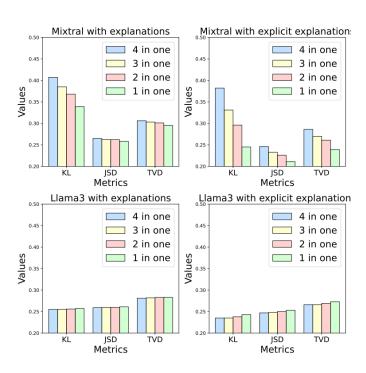
- > Introduction
- > LLMs to Estimate Human Judgment Distributions
- > Experimental Setup
- > Results & Discussion
- **>** Conclusion



### **Experimental Setup**

- Distribution Comparison
  - MJDs vs. HJDs
    - Kullback-Leibler Divergence (KL)
    - JensenShannon Distance (JSD)
    - Total Variation Distance (TVD)
- Fine-tuning Comparison
  - Soft-label fine-tuning on BERT/RoBERTa: MJDs vs HJDs
    - Kullback-Leibler Divergence (KL)
    - Cross-Entropy Loss (CE Loss)
    - Weighted F1 score




- > Introduction
- > LLMs to Estimate Human Judgment Distributions
- Experimental Setup
- Results & Discussion
- **>** Conclusion



LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

### **Results & Discussion**

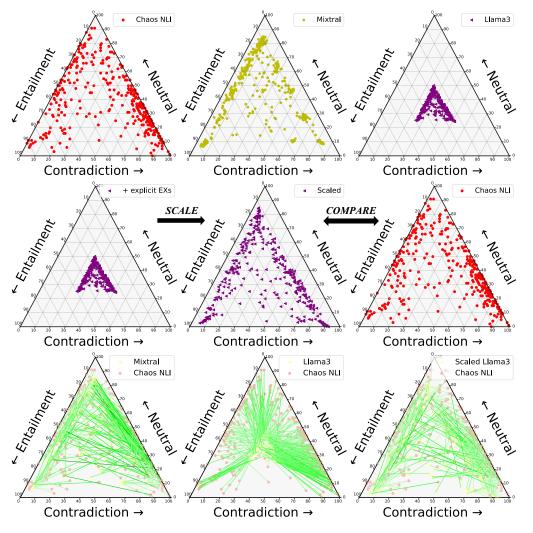
| <b>Distributions\Metrics</b>           | KL↓   | JSD ↓ | TVD↓  |
|----------------------------------------|-------|-------|-------|
| Baseline                               |       |       |       |
| Chaos NLI                              | 0     | 0     | 0     |
| MNLI single label                      | 9.288 | 0.422 | 0.435 |
| MNLI distributions                     | 1.242 | 0.281 | 0.295 |
| VariErr distributions                  | 3.604 | 0.282 | 0.296 |
| Uniform distribution                   | 0.364 | 0.307 | 0.350 |
| MJDs from Mixtral                      |       |       |       |
| $p_{ m norm}$ of Mixtral               | 0.433 | 0.291 | 0.340 |
| + "serial" explanations                | 0.407 | 0.265 | 0.306 |
| + "serial" explicit explanations       | 0.382 | 0.246 | 0.286 |
| + "parallel" explanations              | 0.330 | 0.258 | 0.295 |
| + "parallel" explicit explanations     | 0.245 | 0.211 | 0.239 |
| $p_{\text{sfmax}}$ of Mixtral          | 0.434 | 0.292 | 0.342 |
| + "serial" explanations                | 0.349 | 0.258 | 0.296 |
| + "serial" explicit explanations       | 0.305 | 0.235 | 0.269 |
| + "parallel" explanations              | 0.310 | 0.255 | 0.290 |
| + "parallel" explicit explanations     | 0.217 | 0.208 | 0.232 |
| MJDs from Llama3                       |       |       |       |
| <b>p</b> <sub>norm</sub> of Llama3     | 0.259 | 0.262 | 0.284 |
| + "serial" explanations                | 0.255 | 0.250 | 0.281 |
| + "serial" explicit explanations       | 0.235 | 0.247 | 0.266 |
| + "parallel" explanations              | 0.257 | 0.261 | 0.285 |
| + "parallel" explicit explanations     | 0.243 | 0.253 | 0.273 |
| $oldsymbol{p}_{	ext{sfmax}}$ of Llama3 | 0.231 | 0.245 | 0.260 |
| + "serial" explanations                | 0.226 | 0.242 | 0.258 |
| + "serial" explicit explanations       | 0.212 | 0.232 | 0.245 |
| + "parallel" explanations              | 0.220 | 0.245 | 0.260 |
| + "parallel" explicit explanations     | 0.214 | 0.237 | 0.254 |





# Results & Discussion WAXIMILIANSUNIVERSITÄT MÜNCHEN

| <b>Distributions\Metrics</b>             | $\mathbf{KL}\downarrow$ | $\mathbf{JSD}\downarrow$ | $\mathbf{TVD}\downarrow$ |
|------------------------------------------|-------------------------|--------------------------|--------------------------|
| Baseline                                 |                         |                          |                          |
| Chaos NLI                                | 0                       | 0                        | 0                        |
| MNLI single label                        | 9.288                   | 0.422                    | 0.435                    |
| MNLI distributions                       | 1.242                   | 0.281                    | 0.295                    |
| VariErr distributions                    | 3.604                   | 0.282                    | 0.296                    |
| Uniform distribution                     | 0.364                   | 0.307                    | 0.350                    |
| MJDs from Mixtral                        |                         |                          |                          |
| $\boldsymbol{p}_{	ext{norm}}$ of Mixtral | 0.433                   | 0.291                    | 0.340                    |
| + "serial" explanations                  | 0.407                   | 0.265                    | 0.306                    |
| + "serial" explicit explanations         | 0.382                   | 0.246                    | 0.286                    |
| + "parallel" explanations                | 0.339                   | 0.258                    | 0.295                    |
| + "parallel" explicit explanations       | 0.245                   | 0.211                    | 0.239                    |
| $p_{ m sfmax}$ of Mixtral                | 0.434                   | 0.292                    | 0.342                    |
| + "serial" explanations                  | 0.349                   | 0.258                    | 0.296                    |
| + "serial" explicit explanations         | 0.305                   | 0.235                    | 0.269                    |
| + "parallel" explanations                | 0.310                   | 0.255                    | 0.290                    |
| + "parallel" explicit explanations       | 0.217                   | 0.208                    | 0.232                    |
| MJDs from Llama3                         |                         |                          |                          |
| <b>p</b> <sub>norm</sub> of Llama3       | 0.259                   | 0.262                    | 0.284                    |
| + "serial" explanations                  | 0.255                   | 0.259                    | 0.281                    |
| + "serial" explicit explanations         | 0.235                   | 0.247                    | 0.266                    |
| + "parallel" explanations                | 0.257                   | 0.261                    | 0.283                    |
| + "parallel" explicit explanations       | 0.243                   | 0.253                    | 0.273                    |
| <b>p</b> <sub>sfmax</sub> of Llama3      | 0.231                   | 0.245                    | 0.260                    |
| + "serial" explanations                  | 0.226                   | 0.243                    | 0.258                    |
| + "serial" explicit explanations         | 0.212                   | 0.232                    | 0.245                    |
| + "parallel" explanations                | 0.226                   | 0.245                    | 0.260                    |
| + "parallel" explicit explanations       | 0.214                   | 0.237                    | 0.254                    |


*inconsistent* 

| Distributions                      | BERT FT (dev / test) |                      |               | RoBERTa FT (dev / test) |               |                       |
|------------------------------------|----------------------|----------------------|---------------|-------------------------|---------------|-----------------------|
| Distributions                      | Weighted F1↑         | KL↓                  | CE Loss ↓     | Weighted F1↑            | KL↓           | CE Loss↓              |
| Baseline                           |                      |                      |               |                         |               |                       |
| Chaos NLI train set                | 0.626 / 0.646        | 0.074 / 0.077        | 0.972 / 0.974 | 0.699 / 0.650           | 0.061 / 0.067 | 0.932 / 0.943         |
| MNLI single label                  | 0.561 / 0.589        | 0.665 / 0.704        | 2.743 / 2.855 | 0.635 / 0.603           | 0.844 / 0.867 | 3.281 / 3.344         |
| MNLI distributions                 | 0.546 / 0.543        | 0.099 / 0.102        | 1.046 / 1.048 | 0.613 / 0.604           | 0.100 / 0.096 | 1.047 / 1.029         |
| VariErr distributions              | 0.557 / 0.559        | 0.179 / 0.186        | 1.286 / 1.299 | 0.617 / 0.589           | 0.174 / 0.197 | 1.269 / 1.333         |
| MJDs from Mixtral                  |                      |                      |               |                         |               |                       |
| $p_{\text{norm}}$ of Mixtral       | 0.416 / 0.422        | 0.134 / 0.133        | 1.152 / 1.142 | 0.486 / 0.466           | 0.123 / 0.127 | 1.118 / 1.123         |
| + "serial" explanations            | 0.443 / 0.454        | 0.145 / 0.141        | 1.183 / 1.166 | 0.509 / 0.514           | 0.128 / 0.128 | 1.132 / 1.126         |
| + "serial" explicit explanations   | 0.506 / 0.511        | 0.130 /0.130         | 1.139 / 1.132 | 0.569 / 0.572           | 0.114 / 0.122 | 1.091 / 1.107         |
| + "parallel" explanations          | 0.404 / 0.428        | 0 134 / 0 131        | 1 150 / 1 136 | 0.483 / 0.502           | 0.123 / 0.122 | 1 118 / 1 109         |
| + "parallel" explicit explanations | 0.507 / 0.514        | <b>).108 / 0.108</b> | 1.074 / 1.065 | 0.558 / 0.565           | 0.092 / 0.098 | 1.025 / 1.037         |
| $p_{\text{sfmax}}$ of Mixtral      | 0.427 / 0.432        | 0.131 / 0.129        | 1.140 / 1.130 | 0.497 / 0.472           | 0.121 / 0.125 | 1.112 / 1.118         |
| + "serial" explanations            | 0.452 / 0.462        | 0.121 / 0.118        | 1.113 / 1.096 | 0.506 / 0.525           | 0.110 / 0.109 | 1.078 / 1.069         |
| + "serial" explicit explanations   | 0.509 / <b>0.520</b> | 0.105 / 0.105        | 1.064 / 1.057 | <b>0.568</b> / 0.573    | 0.093 / 0.098 | 1.026 / 1.036         |
| + "parallel" explanations          | 0 397 / 0 429        | 0.121 / 0.119        | 1.112 / 1.098 | 0.497 / 0.505           | 0.110/0.111   | 1.079 / 1.074         |
| + "parallel" explicit explanations | <b>0.522</b> / 0.517 | 0.095 / 0.095        | 1.035 / 1.026 | 0.567 / <b>0.576</b>    | 0.082 / 0.087 | 0.994 / 1.003         |
| MJDs from Llama3                   |                      |                      |               |                         |               |                       |
| <b>p</b> <sub>norm</sub> of Llama3 | 0.514 / 0.526        | 0.097 / 0.098        | 1.038 / 1.036 | 0.541 / 0.528           | 0.091 / 0.094 | 1.023 / 1.025         |
| + "serial" explanations            | 0.574 / 0.574        | 0.096 / 0.097        | 1.037 / 1.033 | 0.618 / 0.601           | 0.091 / 0.093 | 1 020 / 1.022         |
| + "serial" explicit explanations   | 0.578 / 0.574        | 0.091 / 0.092        | 1.022 / 1.018 | 0.634 / 0.598           | 0.085 / 0.088 | 1.003 / 1.006         |
| + "parallel" explanations          | 0.573 / 0.582        | 0.09870.098          | 1.04171.038   | 0.636 / 0.598           | 0.093 / 0.095 | 1.026 / 1.028         |
| + "parallel" explicit explanations | 0.582 / 0.586        | 0.094 / 0.095        | 1.030 / 1.026 | 0.639 / 0.620           | 0.089 / 0.091 | 1.014 / 1.016         |
| $p_{\rm sfmax}$ of Llama3          | 0.528 / 0.524        | 0.091 / 0.093        | 1.023 / 1.021 | 0.546 / 0.535           | 0.085 / 0.089 | 1.005 / 1.009         |
| + "serial" explanations            | 0.567 / 0.576        | <u>001001_</u>       | 1.021 / 1.016 | 0.626 / 0.608           | 0.085 10.086  | 0.996 / 1.000         |
| + "serial" explicit explanations   | <b>0 585</b> / 0 568 | <u>0.086 / 0.087</u> | 1.008 / 1.004 | <b>0.646</b> / 0.610    | 0.077 / 0.081 | <u>0.981 / 0.98</u> 7 |
| + "parallel" explanations          | 0.584 / <b>0.583</b> | 0.092 / 0.093        | 1.024 / 1.020 | 0.643 / 0.611           | 0.085 / 0.089 | 1.004 / 1.008         |
| + "parallel" explicit explanations | 0.581 / 0.578        | 0.088 / 0.089        | 1.014 / 1.010 | 0.645 / <b>0.621</b>    | 0.081 / 0.085 | 0.993 / 0.996         |



LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

### **Results & Discussion**





| <b>Distributions\Metrics</b>           | <b>D.Corr</b> ↑ |  |  |  |
|----------------------------------------|-----------------|--|--|--|
| Uniform distribution                   | 0               |  |  |  |
| MNLI single label                      | 0.612           |  |  |  |
| MNLI distributions                     | 0.795           |  |  |  |
| VariErr distributions                  | 0.688           |  |  |  |
| MJDs from Mixtral                      |                 |  |  |  |
| $p_{\text{norm}}$ of Mixtral           | 0.609           |  |  |  |
| + "parallel" explicit explanations     | 0.719           |  |  |  |
| $p_{ m sfmax}$ of Mixtral              | 0.593           |  |  |  |
| + "parallel" explicit explanations     | 0.709           |  |  |  |
| MJDs from Llama3                       |                 |  |  |  |
| <b>p</b> <sub>norm</sub> of Llama3     | 0.689           |  |  |  |
| + "parallel" explicit explanations     | 0.809           |  |  |  |
| $oldsymbol{p}_{	ext{sfmax}}$ of Llama3 | 0.677           |  |  |  |
| + "parallel" explicit explanations     | 0.802           |  |  |  |



- > Introduction
- > LLMs to Estimate Human Judgment Distributions
- Experimental Setup
- > Results & Discussion
- **Conclusion**



#### MAXIMILIANS-UNIVERSITÄT Conclusion

- Explanation works.
- FT Comparison *cannot* be predicted well by Dist. Comparison.
- Llama3 and Mixtral exhibit rather different clusters in visualization. However, further zooming in on Llama3 MJD shows that Llama3 is slightly skewed towards the right side (Contradiction), more in line with Chaos NLI, which corroborates Llama's superior performance in FT Comparison.
- Distance Correlation proves Llama3 is globally better aligned with the HJD than Mixtral and supports its better fine-tuning performances.
- Instance-level metrics are better complemented by additional investigations on the shape and smoothness of the resulting annotations using <u>visualization</u> and <u>global</u> measures.
- We encourage an uptake of explanation-informed datasets.

THE 2024 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING



# Thank you !!!

#### Resource:





Paper

Code

#### **Acknowledgement:**





**European Research Council** Established by the European Commission



Presenter: Beiduo Chen Email: Beiduo.Chen@lmu.de